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CALCULATION OF LAMINAR AND TURBULENT BOUNDARY LAYERS 

FOR TWO-DIMENSIONAL TIME-DEPENDENT’ FLOWS 

by 
Tuncer Cebeci 

I. SUMMARY 

In recent years several methods have been developed to compute time- 

dependent laminar and turbulent boundary layers. Some of these methods use 
the eddy-viscosity, mixing-length concepts to model the Reynolds stresses 

(for example, see references 1 and 2), and others use the approach advocated 
by Bradshaw (see for example, references 3 and 4). The chief advocates of 

Bradshaw's method are Nash and Patel. 

A general method for computing laminar and turbulent boundary layers for 

two-dimensional time-dependent flows is presented in this report. The method 

uses an eddy-viscosity formulation to model the Reynolds shear-stress term and 

a very efficient numerical method to solve the governing equations. The model 

developed by Cebeci, has been applied to two-dimensional flows (5) and to three- 

dimensional flows (697) and has been shown to give good results. 

In Section II the governing equations and the eddy-viscosity formulas are 

presented. When physical coordinates are used, the numerical solutions of the 

boundary-layer equations are quite sensitive to the spacings in the x- and 

t-directions. In problems where computation time and storage become important, 

it is desirable to reduce the sensitivity to At- and Ax-spacings. This can 

be done by expressing and by solving the governing equations in appropriate 
transformed coordinates and transformed variables. In Section II we introduce 

such transformations. 

Section III presents a discussion of the numerical method and in Section IV 

the results obtained by the present method for both laminar and turbulent flows 

are discussed. Based on the results given in this report, we find the method 

quite efficient and suitable for solving time-dependent flows for both laminar 

and turbulent boundary layers. 



II. GOVERNING EQUATIONS 

2.1 Boundary-Layer Equations 

The continuity and momentum equations for incompressible, unsteady laminar 

and turbulent boundary layers are: 

Continuity 

g+av=, 
w 

Momentum 

au+ u au a!e 
at 

2L+v-- aue la 
ay at + 'e ax 

-+-- 'y--puv 
C 

au -T7 
P w v 1 

(1) 

(2) 

The boundary conditions for the wall and for the outer edge of the 

boundary layer are: 

y=o u, v = 0 (3a) 

Y-t- u + u,bLt) (3b) 

To complete the formulation of the problem, additional boundary conditions 

must be specified on some initial upstream surface, t = T(x) say, normal to 

the x-t-plane. Here we consider the simple case where this surface is made up 
of the two surfaces t = t, = const. and x = xa = const. The required 

boundary conditions are: 

t = t, and ' Lx, ; U = Ua(X,Y) (4a) 

x = x, and t>t -a ; U = U,(LY) (4b) 

Thus at some initial time, conditions are specified everywhere and for subse- 

quent time, conditions are specified on some upstream station. 

2.2 Closure Assumptions for the Reynolds Shear Stress 

The solution of the system given by (1) to (4) requires closure assumptions 

for the Reynolds shear stress - m. In our study we use the eddy viscosity 

concept and define 

(5) 
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According to the eddy viscosity formulation of ref. 5, the turbulent 

boundary layer Is divided into two regions , called inner and outer regions, 

and the eddy viscosity is defined by separate formulas in each region. They 

are: 

1 ('m)i = ( Om4Y Cl - wWNl12 151 
Em 

= 

I ('m)o = ~1 1 he - u)dy 
0 

(‘m)j ( tEm)o 

In @a), A is a damping-length constant. For an incompressible flow with no 

mass transfer, it is given by 
-l/2 

(7a) 

l/2 l/2 vu du 
= UT(l - 11.8~;) , p; = 22, Us = ,3 dx 

T 
(7b) 

The parameters ~1 is an "universal" constant equal to 0.0168 for high Reynolds 

number flows, R, > 5000. At low Reynolds number its variation can be approxi- 

mated by a formula given by Cebeci 

1.55 -- 
a = 5) 1 + n (8) 

II = 0.55[1 - exp(-0.243zi'2 - 0.298z1)] 

where z1 = (R,/425 - 1). 

Equation (7a) was proposed by Cebeci (5). 

(P; = O), 

For a W&plate flow 
it reduces to a form proposed by Van Driest , Cebeci's 

extension was made by following Van Driest's modeling of the viscous sublayer 

to Stokes flow. The shear-wave propagation velocity in Stokes flow was 

assumed to be the friction velocity obtained at a y+-value determined by the 

intersection of the linear law of the wall with the log law of the wall 

(rather than its wall value as was assumed by Van Dtiiest) that is, 

(9) 

3 



The friction velocity (r,/~)"~ at the intersection of the linear law of the 

wall with the log law was determined from the momentum equation approximated 

close to the wall by (no mass transfer) 

The solution of (10) with y: = y,/o ur = 11.8, that is, 

TL 1 
TW 

- 11.8~; 

(10) 

enables the damping-length constant A to be written in the form given by 

Pd. 

Although this-type of approach is highly speculative, and may have little 

theoretical basis (if any), the expression for A obtained in this manner 

worked well for turbulent boundary layers with heat and mass transfer (5). 

As an example, we compare the predictions of this approach for an incompres- 

sible flow with no mass transfer. In reference 8, Back, et al, presented some 

results on the generation of turbulence near a smooth boundary in a variable 

free-stream velocity flow by using an analysis based on the extension of 

Einstein and L-l's model('). According to the predictions of that model, 

the ratio of the sublayer growth frequency w to that of a flat-plate, wf.p.' 
varies with 5 in the manner shown in Figure 1. The parameter 5 on which 

the frequency of sublayer growth depends is given by 

where u: is the nondimensional velocity at the edge of the sublayer, uS’uT 
and was assumed to be 15.6 in Einstein and Li's analysis as well as in Back's 

analysis. 

According to (9), w is given by 

1 TS w=y 
( 1 i- (13) 
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2.0 

* 1.6 

1.2 w 

Wf.p. 
0.8 

1. 
PREDICTION ACCORDING 
TO EINSTEIN AND LI’S 

1 DECELERATION + ACCELERATION 1 DECELERATION ACCELERATION \ 
0 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

5 = 1.2l"~p; 

Figure 1. Comparison of predictions of the present model with those of 
Einstein and Li's model. 

We see that with uz = 15.6, equation (11) can also be written as 

w - = 1 - 0.625~ 
Wf.p. 

(14) 

The predictions of (14) with those predicted by the extension of Einstein-Li's 
model are shown in Figure 1. 

Cebeci's extension of Van Driest model to unsteady flows is described in 

reference 10. For completeness, we include it here. For an incompressible 

flow with no mass transfer, integration of (10) between the walland y,, 

yields 

Ts = Tw +=y ax s (15) 

(16) 

Noting that, 

L!E= aue+t$ 
ax p ( 'e ax 1 
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we can write ‘(15) as 

L 1 
=W 

-11.8 (p; + px', (17) 

Here pl is given by the second expression in (7b) and pi is defined by 

ati, 
P;=+ 

e 

Thus (7a) becomes 
-l/2 

A= 26vu;l [1 - 11.8(pf + $1 

(18) 

(‘9) 

, 
2.3 Transformation of the Governing Equations 

The boundary-layer equations (1) to (2) subject to (3) and (4) can be 

solved when they are expressed either in physical coordinates or in transformed 

coordinates. Each coordinate hasitsown advantages. In problems where the 

computer storage becomes important, the choice of using transformed coordinates 

becomes necessary, as well as convenient, since the transformed coordinates 

allow large steps to be taken in the x- and t-directions. The reason is 

that the profiles expressed in the transformed coordinates do not change as 

rapidly as they do when they are expressed in physical coordinates. The use 

of transformed coordinates stretches the coordinate normal to the flow and 

takes out much of the variation in boundary-layer thickness for laminar flows. 

In addition, they remove the singularity that the equations in physical 

coordinates have at x = 0 for all time. 

We first use the transformed coordinate n defined by 

(201 

and introduce a dimensionless stream function f(x, t, n) defined in 

$ = A$ f(x,t,n) (21) 
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Here u,(x) is some reference velocity and 

(22) 

With the relations defined by (20) to (22) and with the definitionof eddy 

viscosity, (5), it can be shown that the momentum equation can be written as 

(bf")' + !.p ff" - P(f')2 + p3 = x 
t 
f' z&-f" g + 

Here primes denote differentiation with respect to n and 

, b=l+e; 

(23) 

(24) 

The boundary conditions given by (3) become 

q=o f=f’=(J (25a) 

11 + n, f' = Ue/Uo (25b) 

Similarly the initial conditions given by (4) can be transformed. For some 

problems where the flow starts as laminar, they can be obtained from (23). 

Along the n-t plane where x = 0, (23) reduces to 

pm’+ !T$- ff” - P(f’)2 + p3 = x af’ 
u. at (26) 

Note that, in general, the right-hand side of (26) is not equal to zero. For 

example, although for a flat-plate 
point flow (uo = Ax), it is not. 
form. 

flow it is equal to zero, for stagnation- 

For generality we will keep it in that 

The specification of the init i al conditions at t = t, and x 1 x, requires 

special treatment. Here for simplicity we assume that they are given by the 
steady-state conditions. Then at time t = 0, (23) reduces to 

(bf”) ’ + y ff” - P(f')2 + p3 = x f' (27) 

7 



where, for example, 

due 
'3 = > 'e dx 

0 

In terms of transformed variables, the eddy viscosity formulas can be 

written as 

(“m+lj = o.l6R;'2,2 1 f" 1 [l - exp(-r/A)12 @a) 

(E;)~ = ,R;'2[f;n, - f-1 (28b) 

Here the subscript refers to the boundary-layer edge and 

RX 
uOx =- 

~ = R;'4(f;)1'2 

v ' A 26 n [1 -11.8(p; + P,+)]"~ (29) 

8 



III. NUMERICAL METHOD 

We use a two-point finite-difference method to:solve the system given by 

(23), (25)-(27). This method, developed by "i,ij Keller("), has been applied 
to two-dimensional flows by Keller and Cebecl 
by Cebeci(6'7). 

, to three-dimensional flows 
Here we apply it to two-dimensional time-dependent flows. 

We first consider (26) and write it in terms of a first-order system of 
partial differential equations. For this purpose we introduce new variables 
u(t,n), v(t,n) so that (26) can be written as 

f' = u (3Oa) 

u' = v (3Ob) 

v' + P fv- 1 Pu2 + p3 = * $ 
0 

(3Oc) 

Here 

p =P+l 
1 2' 

We next consider the net rectangle shown in Figure 2. We denote the net 

points by 

n- J 
nj-l/2 

nj-1 

I I 

%-1 %-1 %-l/2 % %-l/2 % 

I 
Figure 2. Net rectangle for equation (26). 
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to = 0 t, = t,-, + k, n=l,2 , l **, N (31a) 

nO =0 q. = 
J nj-l + hj j =1,2 , l **, J 

nJ = 0, (31b) 

Here the net spacings, k, and hj are completely arbitrary, and indeed may 

have large variations in practical calculations. The variable net spacing hj 

is especially important in turbulent boundary-layer calculations which are char- 

acterized by large boundary-layer thicknesses. To get accuracy near the wall, 

small net spacing is required while large spacing can be used away from the 

wall. 

We approximate the quantiti'es (f, u, v) at points (t,, nj) of the 

net by net functions denoted by (fi, uy, vi). We also employ the notation, 

for points and quantities midway between net points and for any net function 
n. 

gj' 

'n-1/2 = ; (tn + t,,, 1, nj-l/? = 2 llj + nj'-l ' ( 1 

(32) 
gn-‘i2 = ; (93 + g;-1)’ 

j 93-l/2 = ; (g!j + SJ-,I 

The difference equations which are to approximate (30) are formulated by 

considering one mesh rectangle as in Figure 2. We approximate (30a,b) using 

centered difference quotients and average about the midpoint (t n'nj-l/2 1 

of the.segment P2P4. 

fjn - f!j-l _ n 
hj - ‘j-l/2 

n n u. -u. J J-1 - n 
hj 

- 'j-l/2 

Similarly (30~) is approximated by centering about the midpoint tn-,,2. 

'j-l/2 of the rectangle PTP2P3P4. This gives: 

(3W 

(33b) 

n v. -v J 3-I 

hj 
+ P;(fv);-,,2 - Pn(u2)3-,,2 - y4-,,2 = Tj-,,2 n-’ (33c) 

10 



where 

n-l 
““-I- “y-1 

T. 
J-T/2 

= -y”;:],2 - (p3)“-“2 - J hj J-’ + P;-'(fv)Jr;,2 

- Pn-'(u2)$,2 (34) 

The boundary conditions are: 

II” 
f; = 0, u; = 0, UJn = 6 

We next consider (27) and again write it in terms of a first-order system 

by introducing u(x,n), v(x,n). This allows (27) to be written as (30a,b) and 

(bv)' + P,fv - Pu' + P3 = (36) 

The net rectangle is the same as before, except now t is replaced by 

x and the net points in the x-direction are represented by 

x0 = 0, xi =x. ,-I + 'i* i = 1, 2, . . . I (37) 

The difference equations to (30a,b) are 

(38a) 

(b"); - (bv):-, 

hj 
+ (Pi + ai)(fl, 

+ ai (v&f;. 

i 
u~-"j-]- 1 

hj 
- "j-112 

Similarly the difference equations for (36) are: 

(3%) 

1). i-,/2 - (Pi + u,)h2);+2 

.1/z (38~) 

11 



Here 

'i-l/Z 
ui = -y (3%) 

i-l 
'j-112 = ai [-(A;:;,2 + (f");:;,2]- (P3)i-1/2 

(bv);-' - (bv);:; 
- 

hj 
+ P;-'(f")::;,2 - Pi-'(u2)$,2 

I 
(39b) 

We now consider the general equation (23) and write it in terms of a 

system of first-order equations. We introduce variables u(x,t,n), v(x,t,n) 
so that (23) can be written as 

f' = " (doa) 

u' = " (4Ob) 

(by)’ + P,fV - Pu2 + P3 = x 
( 

au af 1 au 
uax-"5F++x ) (4Oc) 

We now consider the net cube shown in Figure 3. 

(j,n,i-1) (j,n,i) 

(j .n-1 .i- 

T 

1 
-(j-l x(i ) 

Figure 3. Net cube for the difference equations for (40). 
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For the net points given by (31) and (37), @approximate the quantities 

(f,. U, V) at points (Xi. t,, nj ) of the net by net function denoted by 
(fi'", ":*n, ";a" ). The equations (40a,b) are approximated using centered 

difference quotients and averaged about the midpoint (xi, tn. nj-,,2), 

that is 

i,n i,n u. 
J -"j-l _ i,n 

9 
- "j-l/Z 

(41a) 

(41b) 

where, for example, 

The difference equations which are to approximate (40~) are: 

+ $ (iin - u,-, 1 (42) 

where, for example, 

Yj =;tvj i-1,n 'J' + vj + ,i-l,n-1 + "i.n-1 
j J 

) 5 ; (“p + “y4) 

ui -1(” i,n + ,i,n-1 ., 
4 j .I + “J-T + “y) = ; (uj1;,2 + up;;;, 

iin = 1 (u i;n + ei-1.n i,n 
4 j 3 + “j-1 * J:;‘“) = ; (“;5;,2 + “J:;$ 

(P,);;;;; = J- (Pi 4 n f PA-' + PA", f Pi:;) 

(43) 

(43b) 

(43c) 

(43d) 

13 



Here by v?34 J we mean $34 = vl.i-l + ,?-l,i-1 + "v-1.i 
J .I .1 .I , the sum of the 

values of -vj at three of the f&w corners of the face of the box. Intro- 
ducing (43) and similar definitions for other terms into (42), after consid- 

erable algebra, we get 

(bvJj - bvjj-, + hj i (P,)~:~:~(fv)j-,/* - (P)~:11:~(u2)j-,/2 

'i 
-7 ["j-]/2(uj-1/2 + '~!~,2 + 'iTT;l - 2Gi-1) - Vj-1/2fj-1/2 

- (f;$; - 27ii-,)vj-,,2 - v;1;,2fj-,,2j - 2$,uj-,,2 ] = T;:;j;-' 

Here 

(44) 

(453) 6, = 'i-1/2 

k"(UOYF 

Ti-',n-' = (bv,;"; - (bv);34 + hj ;-(P,);:;;;(fv);;;,2 + 
J-1/2 

- 4(P3)n-1,2 i-"2 + 2 [";y,2("J:;;; -2Ui-,) - y;~;,2(f;'$; - 2f.J 

t 26 (u. i-1,n + 2ij t 
n J-1/2 n-l ' 1 (45b) 

We note that, for simplicity, we have dropped the superscripts 1, n in the 

above equations. 

The boundary conditions given by (25) become 

u 
f,=O, u. = 0 , 

UJ=$& 

The difference equations (33) and (38) for the initial conditions along 

the t-axis, and along the x-axis, respectively, together with the difference 

equations (41), (44), for the general case are imposed for j = 1, 2, . . . . J. 
i-l 

If we assume (fj"-', us-', vj"-') for 0 'j IJ, and if we assume (fj , 
i-l 

"j 
, v:-') for 0 ~j 'J, then (33) and (38) for 1 2 j 5J and their 

boundary conditions yield an implicit nonlinear algebraic system of 35 f 3 

equations in as many unknowns 'f3, us> vi) and (fi,'uJ, vj). This system 

can be linearized by using Newton's methods and the resulting linear system 

14 



can be solved very effectively by using the block-elimination method. 'A brief 

description of the solution procedure is given below. For details, see refer- 

ences 11, 12 and 13. 
\ 

Let us consider the system given by (33) and (35). Using Newton's method, 

we can write the linearized difference equations for (33) as: 

h. 
"fj - Bfj_l - ~ (SUj + 6U j-1) = (r,)j (47a) 

hj 
~Uj - 6"j,l - ~ tsvj + 6vj-l) = (r3)j (47b) 

tsl)jsvj + (s2)j”‘j + ('3)jsfj + ('4)jsfj_l + (s5)j6Uj + (S6)jSUj 1 = (r )e 
25 

Here 

(r, )j = fj"-, - '; + hju!j+2 

(r3)j = UJ-, - Us + hjVJ-,/2 

n-l 
(r2)j = Tj,l/2 - CviMj/2 + P!/(fV)3-,,2 -Pn(U2)S-,,2 -yuy-,,2] 

'7 n (s,)j = X + 2 fj 
j 

ts2)j = - 
'7 n 

k + 2 fj-l 

P" 
(S3)j = $ VS 

= 3 n-l 
ts4)j 2 vj 

ts5)j = -P"u" j-i!? 

IsS)j = -P"u" j-1 -3 

(47c) 

(48a) 

(48b) 

(48~) 

(49a) 

(49b) 

(49c) 

(49d) 

(494 

(49f) 

15 



The boundary conditions.given by (35) become 

sf, = 0 , alo = 0 , 6UJ = 0 (50) 

The system (47), (50) has a block tridiagonal structure. This is not 

obvious and to clarify the solution we write the system in matrix-vector form. 

We first define the three-dlmensional vectors 6, and [j for each value of 

j by 

i 

(rl )j 

Cj = (r*)j 

1 

(r3) j 

Ocj<J - - 

I 1 L j ( J-l 

and the 3 x 3 matrices Aj, Bj, Cj by 

0 0 0 

Cj' ! O 0 0 
0 1 -h-j+, 1 /2 

I 
1 -hj/' 

Aj z (S3)j (s,)j 

t 
0 'A 1 -hj+l/2 

1 

Bj = 

.O x0= O !I (r3)o 

(5ij 

1 

-1 
Thj'2 O 

ts4)j (s,)j ('2)j 

1 < j < J-l - - 

1 (j 53 (52) 

0 < j < J-l - - 

16 



In terms of the above definitions, it can be shown that the system (47) and 

(50) can be written as 

where 

$0 

:1 
6 rL2 
. 

. 

. 

. 

RJL 

:3 
:. 

. . . 

Bj Aj Cj 

. . . 

. . . 

‘J-1 AJ-l ‘J-1 

BJ AJ 

r. : 
%J 

-I 

_ 

3 

9 

12 
. 

. 

. 

. 

$1 

!IJ - . 

(53) 

bw 

(54b) 

The solution of (53) is obtained by the procedure described in reference 13. 

Similarly, for the general case, if we assume 
(fJ-l,i-l, ,n-l,i-1, vn-l,i-l) 

(f;'i-l, ~j".~-', vssi-') and (fJ-lyi, uJ-"~, vy-"') to be kiown for J 

, 

0 < j 2 3, then the differenced equations for the general case can be solved by - 
a similar procedure used for the two equations for the initial conditions. 
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IV. RESULTS 

The present method is applicable to both laminar and turbulent boundary 

layers. The flow is laminar at the leading edge, and it becomes turbulent at 

any specified x, > 0. The initial conditions along the (n,t) plane are gen- 

erated by,solving the system given by (30) and (35), and the initial conditions 

along the (rl,x) plane are generated by solving the steady-flow equations, that 

is, (27) subject to (25). 

The marching procedure is along the t-direction. For a specified 

x-location, the governing equations are solved for each specified t-station. 

Since the linearized form of the equations are being solved, we iterate at 

each t-station until some convergence criterion is satisfied. For both 

laminar and turbulent flows we use the wall-shear parameter fi as the con- 

vergence criterion. Calculations are stopped when 

[6f;;l < 6, (55) 

where the value of 6, is prescribed. 

4.1 Laminar Flows 

There are several problems in which it is necessary to account for the 

fluctuations in the external flow. These fluctuations may change both in 

direction and in magnitude. A simpler case is one in which the external flow 

fluctuates only in magnitude and not in direction. This problem has been 

studied by Lighthill('4) for a flat-plate flow. Accordinq to his analysis, . 
for an external flow in the form 

u,(t) = u,(l + B cos wt) (56) 

the reduced skin-friction coefficient cf/2 q is given by two separate 

formulas depending on whether the reduced frequency wx/uo is much smaller 

or much greater than one, 

0.332 + B(0.498 cos wt - 0.849 wx/uo sin tit), wx/uo << 1 Wa) 

0.332 + B(wx/u~)"~ cos (wt + r/4), wx/uo >'> 1 67b) 
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In many problems it is often desirable to find the phase angle between the 

external flow and say the reduced skin-friction coefficient, which in terms of 

the transformed variables defined by (20) and (21), is fi. To determine this 

numerically for a fixed x = x0, let us consider the general case in which the 
external flow is given by 

u,(x,t) = u,(x)(l + B cos wt) (58) 

and let 

f;(U) = g(x,t) (59) 

We use the following procedure to determine the phase angle between ue(xo,t) 

and g(xo,t). We first compute uo(xo) and g(xo) from 

uo(xo) = $ 

to+P 

J ue(xo,t)dt (6Oa) 

to 

3x,) = + 

t,+p 

J dx,,t)dt (6Ob) 

tO 

where P = ~IT/W and is the period of oscillation of the maintstream. Strictly 
u. and To are functions of to as well as of x 

0’ 
but for B 2 0.150, it 

was found that transient and other effects have virtually disappeared when 
to = P and this value of to was chosen to compute them. 

From (55), we can write 

u,(x,,t) - uo(xo) = A cos wt 

where A E u,(x,)B. 

Similarly, we can write 

g(xo,t) - 3x,) = c cos [wt + +(x0)] = C [COS wt cos +(x0) - sin wt sin $(x,)1 

(62) 
with @(x0) denoting the phase angle between ue and g at x = x0. If we 
take the product of (61) and (62) and integrate the resulting expression, we 
find cos +(x0) to be given by 
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to+p 

/( 
Cu,(x,d) - qx,)l l Cdxo.t)  - 8x0+ 

cos I  =- 

to 

AC r/w (63) 

Here 

A2 = ; 
t,+p 

J 
Cu,(x,A - uohoH2dt (@a) 

tO 

c2 = 0 
t,+p 

J Cdx,J) - ?ho)12dt (64b) Tr 
tO 

Figure 4 shows the computed phase angle (between wall shear and external 

velocity) variation .with reduced frequency wx/uo for a laminar flat-plate 

flow. These calculations were made for an external flow given by (56) with 

B = 0.150, u. = 17.5. A total of 41 t-stations, and 26 x-stations with 

At = 0.20 and AX = 0.1 were taken. Initially noD was taken as 8 with 

An = 0.28. During the calculations no3 was allowed to grow. Our results 

(not shown in the figure) indicate that it is desirable.to compute for two 

periods in order to determine the phase an le accurately. Figure 2 also 

shows the results obtained by Lighthill (147 with low frequency and high 

frequency approximations. These numerical calculations are in good agree- 

ment with those computed by Ackerberg.and Phillips (15) ; they show that 

if EL 0.150, Lighthill's low-frequency approximations to the phase angle 

are accurate'for w < 0.2uo/x and his high frequency approximation is - 
accurate for w 2 2.6uo/x. 

If we write the wall shear as 

T = TO + '1BT, COS (wt + $>, 

then it follows that 

2 = b/r0 - 1) 
To ‘B cos (wt + $> (65) 

20 



50 

40 

30 

+ 

20 

10 

0 

1’ ,- LIGHTHILL, HIGH FREQUENCY APPROX LIGHTHILL, HIGH FREQUENCY APPROX 
--- --- 

LIGHTHILL, LOW FREQUENCY APPROX LIGHTHILL, LOW FREQUENCY APPROX 

I I 1 I I I I 
0.4 0.8 1.2 1.6 2.0 2.4 2.8 

wx/u 0 
Figure 4. Variation of phase angle between wall shear and oscillating 

external velocity for a laminar flow over a flat plate. 

where ~~ is the wall shear for Blasius flow, then again T, is strictly a 

function of x, B and t. However, with + defined by (63) it appears that 

'1 in independent of B and the t-dependence has virtually disappeared when 

iz>P in the calculations. It, thus, appears that nonlinear effects are 

negligible for B 5.0.150. In terms of our transformed variables . 

ZL f;oLt) - (f;)f . . 
To (f" w)f.p.'BcoSbt + $1 

(66) 

and Figure 5 shows the computed values of T,/T~ for t = 2P together with 

Lighthill's low frequency and high frequency approximations. The agreement is 

good, the error at large 'wx/uo being approximately equal to E in magnitude. 

4.2 Turbulent Flows 

The experimental data on unsteady turbulent boundary layers is very limited. 

The only data known to the author is that of Karlsson (16) , which consists of an 
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Figure 5. Variation of amplitude.of the wall shear fluctuations for an oscillating laminar flow over a 
flat plate. 
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oscillating free stream in a zero pressure gradient turbulent flow. The 

measurements were made for a Reynolds number of R6X(~~o&*/w) = 3.6 x 103. 
Here 

6* = j(l +)dy 
0 

In order to compare our numerical calcul;tions with this data, we take the 

external flow to be the same as (56) and for convenience write it as 

ue = u. f uoi cos wt (67) 

Here uo$ = u(l) co according to Karlsson's notation. 

We follow Karlsson's notation and denote the x-component of the velocity 
within the boundary layer by 

u(x,y,t> = U(X,Y> + u (1) cos I$ cos wt - u (1) sin 4 sin wt (68) 

But since f' = u/uo, we can write the above expression as 

uoP' = U(x,y) t u(') cos + cos fdt - u(l) sin + sin wt. (69) 

Using (67), we write (69) as 

j-y-)- i' 
ll(‘) cos ,(l) . 

z-z 
m 

--$ + * Cos wt -+ sin wt 
OD co 

(70) 

Karlsson gives i/u,. u (1) cos o/u:') and u(l) sin a/u:') ;r differ- 

ent frequencies (w/271) and for different free-stream amplitudes . To 
compute u ('1 cos $vlp from (70) we multiply both sides by cos wt and 

integrate with respect to t from 0 to 2wj11 to get 

J’) h/w 

A(n) q 
cos IjJ _ 69 1 

U(‘) 

-- 
ITT J f'(n,t) cos wtdt 

03 B 0 

I 
(71)' 

Similarly, to get u(l) sin o/u('), co we multiply both sides by sin wt and 
integrate. That gives, 
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u(‘) PIT/w 

B(n) q 
sin 13 

P 

= -01 
/ 

co 71s0 

f’(n,t) sin wtdt (72) 

To compute A(q) B(n) we take uniform steps in At and noting that 

At=% , t = nAt, , n = 1, 2, . . . . N (73) 

we approximate (71) and (72) by [recalling (fl)! = f'(nj,tn)] 

N 

Aj = "C (fj)" 
BN n=O 

cos wt, 

N 
Bj=-$- 

c 
BN n=O 

sin wt, 

(74) 

Figures 6 to 8 show the results for Karlsson's data. These calculations 

were started as laminar at x = 0 flir the external flow given by (67) with 

(75) 

0 2.5 5.0 7.5 10.9 

Y (cm) 

Figure 6. Comparison of calculated and experimental velocity profjles at 
Rg* = 3.6 x 103. Symbols denote u/u, for values of B = 0.292, 
0.202 and 0.147. 
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Figure 8. Comparison of calculated and experimental values of the in-phase (A) 

and out-of-phase (B) components of an oscillating turbulent flow over 
(a) Experimental data are for w/2~r = 0.33 cycles/set; 

- 29.2% (o), 20.2% (A), 14.7% (0). Calculations for for 

u/u, 
(b) 

1.2- 

&3 
A 

0.8 

0 2.5 5.0 7.5 10.0 

Y b-4 
Figure 8. (b) Experimental data are for ~/2a = 1.0 cycles/s c* 

PI 
up )/IA = 35.2% 

(o), 19.5%(A), 10.7% (0). Calculations are for u-1 /u. = 35:2%. 
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Figure 8. (c) Experimental data are for 

(a), 13.6% (A), 6.2% (0). 

uO = 5.33 m/set. The Ax-spacing for turbulent flows was one foot. The turbu- 

lent flow calculations were started at x = 3:O5 cm,and at z = 3.7 m the 

experimental velocity profile was matched (see figure 6). We note that the 
experimental velocity profile is essentially unchanged for various magnitudes 

(small) of external flow. 

Figure 7 shows the variation of phase angle (between wall shear and edge 

velocity) with reduced frequency wx/uo for laminar and turbulent flows. The 

results indicated by the present method were obtained by the procedure discussed 

above for W/~IT = 0.33, 1, 4 cycles/set with i = 0.147, 0.352 and 0.264, 
respectively. The other results shown in this figure are obtained from a fig- 

ure given by McCroskey('7). In that figure, McCroskey gives a comparison 

between numerical studies by McCroskey and Philippe, Telionis and Tsahalis, 

and Nash et al., and also some experimental data due to Karlsson interpreted 

by Telionis. The phase angle distribution for laminar flows is computed by 

the present method and is included for comparison purposes. 

Figure 8 shows the comparison between calculated and experimental values 

of the in-phase and out-ofyphase components, that is, 
,(') 

,(') 

sin g/u('), 
cos 4/u(') and 

respectively, for the three different frequencies ind ampli- 
tudes mentizned earlier? It is interesting to note that of these three cases, , 
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only the u(T)sin$/u(') - distribution corresponding to w/211 = 1 has' posi- 

tive and negative values, just like the computed ones! 

Table 1 presents the ratio T,/T~ for laminar and turbulent flows. It 
can be shown that T,/T~ can be calculated from 

T1 -= 
cf/cfo - 1 

TO iti cos (wt + cp) 
(76) 

Here cf, denotes the flat-plate skin friction; it can be calculated from the 

following formula given by Cebeci and Smith (5) 

df, = 2 

(2.44 In R,, + 4.43)2 
(77) 

The results shown in Table 1 indicate that 5n turbulent flows the ratio T,/T~ 

is much smaller than its value in laminar flows. We also observe that for 

turbulent flows the variation of T,/T~ with reduced frequency is relatively 

small compared to its variation for laminar flows; this is consistent with the 
results reported by McCroskey and Philippe (1). 

Table 1. Variation of T,/T~ with Reduced Frequency, z 

VT0 
% 
w Laminar - Turbulent 

1.36 3.3 2.28 
1.48 3.50 2.39 
4.50 6.50 2.75 
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V. CONCLUDING REMARKS 

A numerical method for computing two-dimensional incompressible unsteady 

laminar and turbulent boundary layers with fluctuations in external velocity 

is presented. The Reynolds shear stress term is modeled by using the alge- 

braic eddy-viscosity formulas developed by the author. The numerical accuracy 
of the method is first checked for laminar flows and the results are compared 

by Lighthill's analytical solutions as well as by those obtained by other numer- 
ical methods. Based on these comparisons it is found that the method is quite 

accurate. 

Similar calculations are also made for turbulent flows and the results 

are compared with available experimental data and with other numerical solu- 

tions. In general the present results agree reasonably well with experimental 

data and with those obtained by other numerical methods, McCroskey and 

Philippe(') and Telionis(2), which also used the present author's eddy- 

viscosity formulation, Cebeci 45). The present eddy-viscosity formulation 

is:slightly different than that reported in Cebeci (5) in that it allows the 

unsteady effects through pi in equation (18). Furthermore, it also accounts 

for the low Reynolds number effect which was not included in Telionis' calcu- 
lations(2). Another difference between the present results and with those 
obtained.by McCroskey and Philippe and Telionis and Tashalis may be due to 

the procedure used in computing phase angles and the procedure used to gener- 

ate the initial conditions required to make the turbulent flow calculations. 

Although our turbulent flow calculations agree reasonably well with 

Karlsson's experimental data and with those methods that use algebraic eddy- 

viscosity formulas, they do not agree with those computed by Nash et al. 
This is somewhat surprising because that method is a modified version of 

Bradshawls method, and that the predictions of this method for steady flows, 
see ref. (5), and unsteady flows, see ref. (lo), agreed well with the pre- 

dictions of the author's method. 
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